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LETTER TO THE EDITOR

Geometrical properties of matrix solutions of the nonlinear
Klein–Gordon equation

V V Gudkov
Institute of Mathematics and Computer Science, University of Latvia, Riga LV-1459, Latvia

Received 23 April 1999

Abstract. We have constructed some matrix solutions of a nonlinear Klein–Gordon equation and
proposed a relation between these solutions andSU(n) matrix groups. We have also established
the correspondence between the solutions and the rotations around fixed vectors whose endpoints
form an octahedron.

In the previous papers [1, 2] the solutions of the Klein–Gordon (KG) equation were given as
complex and hypercomplex ones. Here we present a uniform definition of matrix solutions
un of the nonlinear KG equation. Such solutions are constructed on the basis of the unitary
anti-Hermitian anticommutingn × n-matrices. It is shown that solutionu1 draws a helical
curve, solutionu2 realizes a rotation of a unit sphere, while solutionu3 realizes a rotation
around fixed vectors whose endpoints form an octahedron.

Consider the KG equation

∂2u

∂t2
−1u +

dQ

du
= 0 Q(u) = λ2

4
(u2 − 1)2.

The case of the potentialV (ψ) in [3, p 189] can be reduced to this one by changing the
variableψ = um/λ and parameterλ. To simplify the mathematics we choose the direction
x =∑3

j=1 cjxj where
∑3

j=1 c
2
j = 1 and then pass to the moving frame of referencez = x−vt

wherev is the velocity.
Similar to [1, 2], we construct matrix solutions of the KG equation as

un(αz) = − tanh(αz)En + sech(αz)
m∑
j=1

ajMj

m∑
j=1

a2
j = 1, α = λ

√
2

1− v2

wherev2 < 1,n = 1, 2, . . . , andEn is the unitn×n-matrix. The complex linear-independent
n×n-matricesMj(j = 1, 2, . . . , m) should possess the following properties: they are unitary
(M∗j = M−1

j ), anti-Hermitian(M∗j = −Mj), and anticommuting(MiMj = −MjMi). The
symbol∗ denotes the transition to a complex conjugate transposed matrix. Forn = 1 we
should setm = 1 andM1 = i. The fundamental property of the solutions is

du

dz
= α

2
(u2 − 1) for u = un(αz).

Now we define the functionφ ≡ φ(αz) = arccot(sinh(−αz)) and write the accompanying
equalities as

cos(φ) = tanh(−αz) sin(φ) = sech(αz).
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Note that functionφ increases from 0 toπ if z varies from−∞ to∞. For iAj = Mj and
aA =∑m

j=1 ajAj whereAj is a Hermitian matrix in contrast toMj , we rewrite the solution
un in the form

un(z) = cos(φ)En + i sin(φ)aA = exp(iφaA).

For fixed n = 2, 3, . . . and a = (1, 0, . . . ,0) this expression establishes the one-to-one
correspondence between solutionsun and unitary Hermitiann× n-matricesA1. Moreover, if
the expansionaA belongs to a space of unitary unimodular (det(aA) = 1) matrices, then this
expression gives a relation between solutionsun andSU(n) matrix groups.

Consider, next, the casen = 2. As is known [1, 2] in this casem = 3, M1 = iσ1,
M2 = −iσ2, andM3 = iσ3. Hence

u2(αz) = exp(iφaσ) σ = (σ1,−σ2, σ3)

where

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
are unitary Hermitian and anticommuting Pauli matrices. The sign minus beforeσ2 is justified
by the rule of right-hand rotation. The unitary unimodular matrixu2 belongs to theSU(2)
group and, as is proved in [4, p 41], such a matrix realizes rotation of the unit sphere around
vectora by angle 2φ.

The solutionu1 = exp(iφ) can be represented in the complex space(Reu, Im u, z) as a
helical curve with axisz. The solutionu2 realizes a rotation of the unit sphere (or a vector
field) with a centre at a moving point on the helical curveu1. Depending on the choice of
vectora we can obtain different solutionsu2. Moreover, the functionu2 shifted by angle
π/2 also presents the solutioñu2 = exp(i(φ + π/2)aσ) of the KG equation with potential
Q = λ2(ũ2 + 1)2/4 andα2 = 2λ2/(v2 − 1) wherev2 > 1. Thus we can construct solutions
similar to the expressions of the vector fieldsW 0, Z0,W± in the Glashow–Salam–Weinberg
theory. Indeed, ifa = (0, 0, 1), then forφ andφ + π/2, respectively, we find

W 0 = cos(φ)E2 + sin(φ)M3 Z0 = − sin(φ)E2 + cos(φ)M3.

In the casea = (1/√2,±1/
√

2, 0) the solutionu2 is associated with theW±.
We can now proceed to the casen = 3. As is proved in [2], one cannot find two unitary

anti-Hermitian 3× 3-matrices that anticommute with each other. Thereforem = 1 and for
M1 = iA we have

u3(αz) = cos(φ)E3 + sin(φ)M1 = exp(iφA).

Now we construct a basis in a space of unitary Hermitian 3× 3-matrices as

µj =
(
σ̂j 0
0 −1

)
and µj+6 =

(−1 0
0 σ̂j

)
for j = 1, 2, 3

whereσ̂2 = −σ2 andσ̂1, σ̂3 are equal toσ1, σ3, respectively.

µ4 =
( 0 0 1

0 −1 0
1 0 0

)
µ5 =

( 0 0 −i
0 −1 0
i 0 0

)
µ6 =

(−1 0 0
0 −1 0
0 0 1

)
.

Note thatµ3 + µ6 + µ9 = −E3. The matricesµj for j = 4, 5, 6 are obtainable from the first
triple by cyclic rearrangement of the lines and columns as(1, 2, 3)→ (2, 3, 1); and the third
triple µj for j = 7, 8, 9 is obtained from the second one by rearranging cyclically the lines
and columns as(2, 3, 1)→ (3, 1, 2).
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It is easy to verify that the matricesµj for j = 1, . . . ,9 are linear-independent, unitary,
Hermitian, and unimodular. Any matrixA from SU(3) can be represented as an expansion of
matricesµj . Consider a more instructive case when

A =
3∑
j=1

cjµj =
(

c3 c1 + ic2 0
c1− ic2 −c3 0

0 0 −c1− c2 − c3

)
.

The unitarity and the property det(A) = 1 lead to the equalities
3∑
j=1

c2
j = 1 and

3∑
j=1

cj = 1.

To express the coefficientscj as functions of the angular parameterθ we setc3 = a and
c1 + ic2 = b exp(iθ). Then after some calculations we obtain the formulae

c1 = 1− (1 + c3) sin2(θ)

c2 = 1− (1 + c3) cos2(θ)

c3 = (1 + cos(θ) sin(θ))−1− 1.

Let us consider the extreme points of the functionc3(θ). At θ = π/4 or 5π/4 one has
c3 = − 1

3 (minimum), c1 = c2 = 2
3; at θ = 3π/4 or 7π/4 one hasc3 = 1 (maximum),

c1 = c2 = 0. It is clear that the formulae forcj do not vary if we replaceµj byµj+3 orµj+6

in the expansion ofA. Thus we can investigate the following three independent solutions

u3r = exp(iφcjµj ) u3y = exp(iφcjµj+3) u3b = exp(iφcjµj+6)

where two equal indexesj are meant to be summed over valuesj = 1, 2, 3.
To understand what kind of a rotation is realized by these solutions, we start with such

an argument. If the matrixu3r as an operator were applied to the vector(q1, q2, q3) where
q3 = 0, then this action would be equivalent to an action of the 2× 2-matrix exp(iφcσ)
on the doublet(q1, q2). This reduction to the doublet is analogous to that considered in
[5, p 216]. Moreover, taking into account the rearrangement in the construction ofµj+3 and
µj+6, the matricesu3y andu3b should be applied to the vectors(q2, q3, q1) and(q3, q1, q2),
respectively. This means that matricesu3r , u3y, u3b act in local frames of reference(e1, e2, e3),
(e′1, e

′
2, e
′
3), and (e′′1, e

′′
2, e
′′
3), respectively, with the common origin(q3 = 0) provided that

(e1, e2, e3) = (e′2, e
′
3, e
′
1) = (e′′3, e

′′
1, e
′′
2). Thus we state that each matrix realizes rotation

around the vector(c1, c2, c3) in its own frame of reference; in other words, these matrices
realize the rotations around the vectors(c1, c2, c3), (c2, c3, c1), and(c3, c1, c2) in the original
frame of reference(e1, e2, e3).

For a more interesting case whenc3 = − 1
3 the endpoints

( 2
3,

2
3,− 1

3) ( 2
3,− 1

3,
2
3) (− 1

3,
2
3,

2
3)

of the triple of vectors form an equilateral triangle. The opposite points (on the unit sphere)
form an analogous triangle. All the six points form an octahedron with a sidelength of

√
2.

Among other things, the doublet(q1, q2) mentioned above can be formed, for example, from
the endpoints of the vectors(c1, c2, c3) and(−c1,−c2,−c3).

Note that solutionsun constructed in [6] for the KG equation with the special potential

Qk(u) = λ2

4
(u2)

k−1
k ((u2)

1
k − 1)2 k = 1, 2, . . .

can be represented in the form of exp(ikφaA) and hence can be considered in the similar
manner.

We hope that the construction of the solutionsu3 will be useful in the particle physics.
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