Geometrical properties of matrix solutions of the nonlinear Klein-Gordon equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32 L281
(http://iopscience.iop.org/0305-4470/32/26/101)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:35

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Geometrical properties of matrix solutions of the nonlinear

 Klein-Gordon equationV V Gudkov
Institute of Mathematics and Computer Science, University of Latvia, Riga LV-1459, Latvia

Received 23 April 1999

Abstract

We have constructed some matrix solutions of a nonlinear Klein-Gordon equation and proposed a relation between these solutions and $S U(n)$ matrix groups. We have also established the correspondence between the solutions and the rotations around fixed vectors whose endpoints form an octahedron.

In the previous papers [1,2] the solutions of the Klein-Gordon (KG) equation were given as complex and hypercomplex ones. Here we present a uniform definition of matrix solutions u_{n} of the nonlinear KG equation. Such solutions are constructed on the basis of the unitary anti-Hermitian anticommuting $n \times n$-matrices. It is shown that solution u_{1} draws a helical curve, solution u_{2} realizes a rotation of a unit sphere, while solution u_{3} realizes a rotation around fixed vectors whose endpoints form an octahedron.

Consider the KG equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-\Delta u+\frac{\mathrm{d} Q}{\mathrm{~d} u}=0 \quad Q(u)=\frac{\lambda^{2}}{4}\left(u^{2}-1\right)^{2}
$$

The case of the potential $V(\psi)$ in [3, p 189] can be reduced to this one by changing the variable $\psi=u m / \lambda$ and parameter λ. To simplify the mathematics we choose the direction $x=\sum_{j=1}^{3} c_{j} x_{j}$ where $\sum_{j=1}^{3} c_{j}^{2}=1$ and then pass to the moving frame of reference $z=x-v t$ where v is the velocity.

Similar to [1, 2], we construct matrix solutions of the KG equation as
$u_{n}(\alpha z)=-\tanh (\alpha z) E_{n}+\operatorname{sech}(\alpha z) \sum_{j=1}^{m} a_{j} M_{j} \quad \sum_{j=1}^{m} a_{j}^{2}=1, \quad \alpha=\lambda \sqrt{\frac{2}{1-v^{2}}}$
where $v^{2}<1, n=1,2, \ldots$, and E_{n} is the unit $n \times n$-matrix. The complex linear-independent $n \times n$-matrices $M_{j}(j=1,2, \ldots, m)$ should possess the following properties: they are unitary $\left(M_{j}^{*}=M_{j}^{-1}\right)$, anti-Hermitian $\left(M_{j}^{*}=-M_{j}\right)$, and anticommuting $\left(M_{i} M_{j}=-M_{j} M_{i}\right)$. The symbol $*$ denotes the transition to a complex conjugate transposed matrix. For $n=1$ we should set $m=1$ and $M_{1}=\mathrm{i}$. The fundamental property of the solutions is

$$
\frac{\mathrm{d} u}{\mathrm{~d} z}=\frac{\alpha}{2}\left(u^{2}-1\right) \quad \text { for } \quad u=u_{n}(\alpha z)
$$

Now we define the function $\phi \equiv \phi(\alpha z)=\operatorname{arccot}(\sinh (-\alpha z))$ and write the accompanying equalities as

$$
\cos (\phi)=\tanh (-\alpha z) \quad \sin (\phi)=\operatorname{sech}(\alpha z)
$$

Note that function ϕ increases from 0 to π if z varies from $-\infty$ to ∞. For $\mathrm{i} A_{j}=M_{j}$ and $\boldsymbol{a} \boldsymbol{A}=\sum_{j=1}^{m} a_{j} A_{j}$ where A_{j} is a Hermitian matrix in contrast to M_{j}, we rewrite the solution u_{n} in the form

$$
u_{n}(z)=\cos (\phi) E_{n}+\mathrm{i} \sin (\phi) \boldsymbol{a} \boldsymbol{A}=\exp (\mathrm{i} \phi \boldsymbol{a} \boldsymbol{A}) .
$$

For fixed $n=2,3, \ldots$ and $\boldsymbol{a}=(1,0, \ldots, 0)$ this expression establishes the one-to-one correspondence between solutions u_{n} and unitary Hermitian $n \times n$-matrices A_{1}. Moreover, if the expansion $\boldsymbol{a} \boldsymbol{A}$ belongs to a space of unitary unimodular $(\operatorname{det}(\boldsymbol{a} \boldsymbol{A})=1)$ matrices, then this expression gives a relation between solutions u_{n} and $S U(n)$ matrix groups.

Consider, next, the case $n=2$. As is known [1,2] in this case $m=3, M_{1}=\mathrm{i} \sigma_{1}$, $M_{2}=-\mathrm{i} \sigma_{2}$, and $M_{3}=\mathrm{i} \sigma_{3}$. Hence

$$
u_{2}(\alpha z)=\exp (\mathrm{i} \phi \boldsymbol{a} \sigma) \quad \sigma=\left(\sigma_{1},-\sigma_{2}, \sigma_{3}\right)
$$

where

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

are unitary Hermitian and anticommuting Pauli matrices. The sign minus before σ_{2} is justified by the rule of right-hand rotation. The unitary unimodular matrix u_{2} belongs to the $S U(2)$ group and, as is proved in [4, p 41], such a matrix realizes rotation of the unit sphere around vector a by angle 2ϕ.

The solution $u_{1}=\exp (\mathrm{i} \phi)$ can be represented in the complex space $(\operatorname{Re} u, \operatorname{Im} u, z)$ as a helical curve with axis z. The solution u_{2} realizes a rotation of the unit sphere (or a vector field) with a centre at a moving point on the helical curve u_{1}. Depending on the choice of vector \boldsymbol{a} we can obtain different solutions u_{2}. Moreover, the function u_{2} shifted by angle $\pi / 2$ also presents the solution $\tilde{u}_{2}=\exp (\mathrm{i}(\phi+\pi / 2) \boldsymbol{a} \sigma)$ of the KG equation with potential $Q=\lambda^{2}\left(\tilde{u}^{2}+1\right)^{2} / 4$ and $\alpha^{2}=2 \lambda^{2} /\left(v^{2}-1\right)$ where $v^{2}>1$. Thus we can construct solutions similar to the expressions of the vector fields $W^{0}, Z^{0}, W^{ \pm}$in the Glashow-Salam-Weinberg theory. Indeed, if $\boldsymbol{a}=(0,0,1)$, then for ϕ and $\phi+\pi / 2$, respectively, we find

$$
W^{0}=\cos (\phi) E_{2}+\sin (\phi) M_{3} \quad Z^{0}=-\sin (\phi) E_{2}+\cos (\phi) M_{3} .
$$

In the case $\boldsymbol{a}=(1 / \sqrt{2}, \pm 1 / \sqrt{2}, 0)$ the solution u_{2} is associated with the $W^{ \pm}$.
We can now proceed to the case $n=3$. As is proved in [2], one cannot find two unitary anti-Hermitian 3×3-matrices that anticommute with each other. Therefore $m=1$ and for $M_{1}=\mathrm{i} A$ we have

$$
u_{3}(\alpha z)=\cos (\phi) E_{3}+\sin (\phi) M_{1}=\exp (\mathrm{i} \phi A) .
$$

Now we construct a basis in a space of unitary Hermitian 3×3-matrices as
$\mu_{j}=\left(\begin{array}{cc}\hat{\sigma}_{j} & 0 \\ 0 & -1\end{array}\right) \quad$ and $\quad \mu_{j+6}=\left(\begin{array}{cc}-1 & 0 \\ 0 & \hat{\sigma}_{j}\end{array}\right) \quad$ for $\quad j=1,2,3$
where $\hat{\sigma}_{2}=-\sigma_{2}$ and $\hat{\sigma}_{1}, \hat{\sigma}_{3}$ are equal to σ_{1}, σ_{3}, respectively.
$\mu_{4}=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0\end{array}\right) \quad \mu_{5}=\left(\begin{array}{ccc}0 & 0 & -\mathrm{i} \\ 0 & -1 & 0 \\ \mathrm{i} & 0 & 0\end{array}\right) \quad \mu_{6}=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
Note that $\mu_{3}+\mu_{6}+\mu_{9}=-E_{3}$. The matrices μ_{j} for $j=4,5,6$ are obtainable from the first triple by cyclic rearrangement of the lines and columns as $(1,2,3) \rightarrow(2,3,1)$; and the third triple μ_{j} for $j=7,8,9$ is obtained from the second one by rearranging cyclically the lines and columns as $(2,3,1) \rightarrow(3,1,2)$.

It is easy to verify that the matrices μ_{j} for $j=1, \ldots, 9$ are linear-independent, unitary, Hermitian, and unimodular. Any matrix A from $S U(3)$ can be represented as an expansion of matrices μ_{j}. Consider a more instructive case when

$$
A=\sum_{j=1}^{3} c_{j} \mu_{j}=\left(\begin{array}{ccc}
c_{3} & c_{1}+\mathrm{i} c_{2} & 0 \\
c_{1}-\mathrm{i} c_{2} & -c_{3} & 0 \\
0 & 0 & -c_{1}-c_{2}-c_{3}
\end{array}\right) .
$$

The unitarity and the property $\operatorname{det}(A)=1$ lead to the equalities

$$
\sum_{j=1}^{3} c_{j}^{2}=1 \quad \text { and } \quad \sum_{j=1}^{3} c_{j}=1
$$

To express the coefficients c_{j} as functions of the angular parameter θ we set $c_{3}=a$ and $c_{1}+\mathrm{i} c_{2}=b \exp (\mathrm{i} \theta)$. Then after some calculations we obtain the formulae

$$
\begin{aligned}
& c_{1}=1-\left(1+c_{3}\right) \sin ^{2}(\theta) \\
& c_{2}=1-\left(1+c_{3}\right) \cos ^{2}(\theta) \\
& c_{3}=(1+\cos (\theta) \sin (\theta))^{-1}-1 .
\end{aligned}
$$

Let us consider the extreme points of the function $c_{3}(\theta)$. At $\theta=\pi / 4$ or $5 \pi / 4$ one has $c_{3}=-\frac{1}{3}$ (minimum), $c_{1}=c_{2}=\frac{2}{3}$; at $\theta=3 \pi / 4$ or $7 \pi / 4$ one has $c_{3}=1$ (maximum), $c_{1}=c_{2}=0$. It is clear that the formulae for c_{j} do not vary if we replace μ_{j} by μ_{j+3} or μ_{j+6} in the expansion of A. Thus we can investigate the following three independent solutions

$$
u_{3 r}=\exp \left(\mathrm{i} \phi c_{j} \mu_{j}\right) \quad u_{3 y}=\exp \left(\mathrm{i} \phi c_{j} \mu_{j+3}\right) \quad u_{3 b}=\exp \left(\mathrm{i} \phi c_{j} \mu_{j+6}\right)
$$

where two equal indexes j are meant to be summed over values $j=1,2,3$.
To understand what kind of a rotation is realized by these solutions, we start with such an argument. If the matrix $u_{3 r}$ as an operator were applied to the vector $\left(q_{1}, q_{2}, q_{3}\right)$ where $q_{3}=0$, then this action would be equivalent to an action of the 2×2-matrix $\exp (\mathrm{i} \phi c \sigma)$ on the doublet $\left(q_{1}, q_{2}\right)$. This reduction to the doublet is analogous to that considered in [5, p 216]. Moreover, taking into account the rearrangement in the construction of μ_{j+3} and μ_{j+6}, the matrices $u_{3 y}$ and $u_{3 b}$ should be applied to the vectors $\left(q_{2}, q_{3}, q_{1}\right)$ and $\left(q_{3}, q_{1}, q_{2}\right)$, respectively. This means that matrices $u_{3 r}, u_{3 y}, u_{3 b}$ act in local frames of reference $\left(e_{1}, e_{2}, e_{3}\right)$, $\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right)$, and $\left(e_{1}^{\prime \prime}, e_{2}^{\prime \prime}, e_{3}^{\prime \prime}\right)$, respectively, with the common origin $\left(q_{3}=0\right)$ provided that $\left(e_{1}, e_{2}, e_{3}\right)=\left(e_{2}^{\prime}, e_{3}^{\prime}, e_{1}^{\prime}\right)=\left(e_{3}^{\prime \prime}, e_{1}^{\prime \prime}, e_{2}^{\prime \prime}\right)$. Thus we state that each matrix realizes rotation around the vector $\left(c_{1}, c_{2}, c_{3}\right)$ in its own frame of reference; in other words, these matrices realize the rotations around the vectors $\left(c_{1}, c_{2}, c_{3}\right),\left(c_{2}, c_{3}, c_{1}\right)$, and $\left(c_{3}, c_{1}, c_{2}\right)$ in the original frame of reference $\left(e_{1}, e_{2}, e_{3}\right)$.

For a more interesting case when $c_{3}=-\frac{1}{3}$ the endpoints

$$
\left(\frac{2}{3}, \frac{2}{3},-\frac{1}{3}\right) \quad\left(\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right) \quad\left(-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)
$$

of the triple of vectors form an equilateral triangle. The opposite points (on the unit sphere) form an analogous triangle. All the six points form an octahedron with a sidelength of $\sqrt{2}$. Among other things, the doublet $\left(q_{1}, q_{2}\right)$ mentioned above can be formed, for example, from the endpoints of the vectors $\left(c_{1}, c_{2}, c_{3}\right)$ and $\left(-c_{1},-c_{2},-c_{3}\right)$.

Note that solutions u_{n} constructed in [6] for the KG equation with the special potential

$$
Q_{k}(u)=\frac{\lambda^{2}}{4}\left(u^{2}\right)^{\frac{k-1}{k}}\left(\left(u^{2}\right)^{\frac{1}{k}}-1\right)^{2} \quad k=1,2, \ldots
$$

can be represented in the form of $\exp (i k \phi a \boldsymbol{A})$ and hence can be considered in the similar manner.

We hope that the construction of the solutions u_{3} will be useful in the particle physics.

References

[1] Gudkov V V 1997 J. Math. Phys. 384794
[2] Gudkov V V 1997 Theor. Math. Phys. 1131231
[3] Okun' L B 1990 Leptons and Quarks (Moscow: Nauka)
[4] Penrose R and Rindler W 1987 Spinors and Space-Time Vol 1 Two-Spinor Calculus and Relativistic Fields (Moscow: Mir)
[5] Greiner W and Muller B 1996 Gauge Theory of Weak Interactions (Berlin: Springer)
[6] Gudkov V V 1998 Proc. Latvian Acad. Sci. B 52248

